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1 Methods and data

Our method relies on a transfer learning approach to extract image features from daytime satellite

imagery using a convolutional neural network (CNN) (15). In an earlier paper that partially developed

these methods (15), we focused on binary poverty classification for one country (Uganda). Our goal in

the work described here is to build on these methods by extending the analysis to five countries, studying

continuous measures of both consumption and assets, quantifying how models will do when trained on one

country and applied to another, and comparing performance against alternative approaches to estimating

these outcomes. Here we provide more detail about the methods and data used.

1.1 Image feature extraction

Deep learning methods, and convolutional neural networks in particular, have driven recent landmark

advancements in computer vision, helped along by enormous datasets such as ImageNet, which contains

millions of labeled training examples (18). The CNN model that we use is highly non-linear, has over

55 million parameters, and is su�ciently flexible to extract complex features from images, e.g., the

presence/absence of a road. Since we have only several hundred data points for consumption or assets

in each country to be used as labeled training examples, we cannot directly train a large CNN model

to estimate these outcomes from satellite images—we simply do not have enough data. Additionally,

the task of estimating economic well-being from satellite imagery is nontrivial for human non-experts,

precluding the generation of additional labeled training data through crowdsourcing services such as

Amazon Mechanical Turk.

To combat the data scarcity problem, we use a transfer learning method and train a fully-convolutional

CNN model on the data-rich nighttime light estimation task. By solving this related proxy task, the model

learns how to extract features that are also useful for the poverty estimation task. In previous work (15),

we found that a multi-step approach outperforms simpler transfer learning methods that use imagery and

nightlight information. For example, a simpler alternative would be to use an o↵-the-shelf CNN trained

on ImageNet to extract image features that could then be used in conjunction with nightlights to predict

poverty indicators (15,23).

In the first step of the transfer learning approach, we fine-tune an 8-layer CNN model (VGG F)

previously trained on the ImageNet dataset to estimate nighttime light intensity at various locations

given the corresponding daytime satellite images (24). We treat this step of the transfer learning approach

as a classification problem, with three nighttime light intensity classes obtained by fitting a mixture of

three Gaussian distributions to the relative frequencies of the nighttime light intensity values. Intuitively,

the three classes of nighttime light intensities correspond to low, medium, and high intensity. The

three class distinctions were determined by observing the histogram of nighttime light intensities in our

training set, which includes over 300,000 locations in Africa sampled near DHS (Demographic and Health

Surveys) locations (note SM 1.4) (25). The histogram suggests that there are three dominant modes of

nightlight intensities, and the Gaussian mixture model provides a principled method of of binning the

data. Measured nightlight intensity values are integer values ranging from 0-63 (SM 1.5). This interval
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is partitioned into a low class corresponding to near 0 nightlight intensity, a medium class corresponding

to nightlight intensity roughly in the 3-34 range, and a high class corresponding to 35-63.

Since nighttime light data is available globally at a 1 km resolution (26), our inputs are 400 ⇥ 400

pixel daytime satellite images from Google Static Maps at zoom level 16, which roughly correspond to 1

square km areas. The Google Static Maps API does not directly provide temporal data, but each image

has a small watermark denoting the year when the image was taken. The daytime satellite images used

for this study were primarily collected from 2013 to 2015. As such, we use nightlight labels from 2013 to

minimize the temporal di↵erences between daytime image inputs and corresponding nightlight labels.

The model is trained with minibatch gradient descent with the momentum update scheme using the

same hyperparameter settings as proposed in the original VGG paper (24). For complete details on the

method and training process, readers can refer to previous work (15). After training the CNN model to

predict nighttime light intensity, we use this learned model as a feature extractor for daytime satellite

images by discarding the last layer of the CNN model, which is the nighttime light classification layer.

For each household cluster, we use (up to) 100 input images that cover a 10 km by 10 km area centered

around the cluster location. For Nigeria and Tanzania, the two largest countries in our sample by land

area, we sample 25 evenly spaced images for each cluster. For the smaller countries, we fully tile the 10

km by 10 km area, sampling 100 images per cluster. We found that using this sparse sampling strategy for

the larger countries did not a↵ect the performance of the model. Since there is up to 5 km of jitter added

in each direction for cluster locations, covering a 10 km by 10 km area ensures that the true location is

seen somewhere in the input images, regardless of whether the area is rural or urban. Therefore, for each

cluster we make (up to) 100 evaluations of the CNN model, resulting in 100 feature vectors. We then

average these feature vectors to obtain one feature vector for the cluster, which is then used as input

in regression models for estimating survey-based measures of either consumption expenditure or assets.

Note that regularized linear regression models are used instead of another deep neural network because

of the lack of su�cient data to train a complex model.

Spatial context is a key consideration when designing the architecture of the CNN model. Satellite

images are usually large (in pixel dimensions), and important parts of the image are not necessarily in the

center of the image, which is unlike typical images considered in computer vision problems. Before fine-

tuning the pre-trained VGG F model, we convert the fully-connected layers of the CNN into convolutional

layers followed by an average pooling layer. The modified architecture allows for input images of arbitrary

size, whereas traditional CNN models have fully-connected layers at the end of the network with fixed

input sizes that are dependent on the size of the input image. Intuitively, replacing these fully-connected

layers with convolutional layers is an equivalent transformation for images of the same size, but allows the

network to “slide” across larger images, producing multiple feature vectors by making multiple evaluations

of the network across di↵erent parts of the image in an e�cient manner using convolutions. The average

pooling layer then averages these multiple feature vectors into a single feature vector that summarizes

the input image, which can then be used for classification in the nighttime light task. Note that this

averaging process is separate from the averaging process used in creating one feature vector per cluster;

here, the network makes multiple evaluations of a single image via convolutions and averages the results

to produce one feature vector per image.
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1.2 Dimensionality reduction

The CNN extracts 4096-dimensional feature vectors from input satellite images. We find that using prin-

cipal component analysis (PCA) to reduce the dimension retains much of the relevant feature information

(e.g., reducing to the first 10 principal components retains ⇠96-98% of data variation), so in several of

our experiments where many trials need to be run (e.g., Fig. 4), we choose to first reduce the dimension

of the feature vectors to reduce computational cost. Dimensionality reduction is noted wherever it is

applied. The benefits are twofold—not only do we save on computation, but in the case of small training

datasets, we also guard against overfitting by using a less complex model to represent the relationship

between inputs and outputs. However, since we also use regularization in all of our linear regression

models, we emphasize that dimensionality reduction is not strictly necessary for any of our experiments.

1.3 Filter activation maps

The CNN model parameters are represented as individual filters, which slide across the input daytime

image and are specialized for looking for certain features, such as edges and lines in the earlier layers and

more complex features such as buildings and roads in the later layers. We use the term “activating” to

describe a filter that has detected something that it has been trained to look for in a certain part of the

image. One way to visualize the CNN filters is to examine the set of images that activate each filter most

strongly. For the visualizations in Fig. 2, we display a subset of maximally activating images and their

corresponding activation maps from the fifth layer of the CNN model (15).

1.4 Survey data

We study two indicators of economic well-being. The first is consumption expenditure, as measured in

the World Bank’s Living Standards Measurement Surveys (LSMS). Annual consumption expenditure, or

the total amount of money a household spends on consumption goods over 12 months, is the standard

measure used in developing countries to classify households as poor or not poor. The LSMS surveys are

conducted in many countries around the world, and we use the most recent LSMS surveys available in

Africa: Nigeria 2012-13, Tanzania 2012-13, Uganda 2011-12, and Malawi 2013. LSMS surveys use a two-

stage sampling design, in which enumeration areas (which we refer to as “clusters”, roughly equivalent

to villages in rural areas or wards in urban areas) are sampled throughout a country, with probability of

sampling proportional to population, and then households are randomly sampled within each cluster.

The LSMS surveys we use are each part of a longitudinal study, with households tracked over the

course of several years. As individual members split o↵ and start their own households or otherwise move,

new single household cluster coordinates are added to the dataset. To reduce noise, we use only cluster

coordinates with multiple households when training and evaluating our models. Our resulting clusters

contain between 2 and 20 households, with a mean of 10.9 and a median of 10.

For each survey, we averaged household consumption expenditures at the cluster level, and then used

purchasing power parity exchange rates to convert measurements in each country to a common currency

(2011 USD), allowing for direct comparison to the current World Bank global poverty line of $1.90 per

capita per day. The distribution of consumption expenditures at the cluster level was roughly log-normal,

so we decided to estimate log expenditures.

16



Cluster locations are reported as the average latitude and longitude of cluster households, plus some

added noise (± up to 2 km in urban areas, up to 5 km in rural areas, and up to 10 km for a random 1%

of clusters) to preserve the anonymity of survey respondents. Since we do not know the true location of

each cluster, we sample daytime satellite imagery from a 10 km by 10 km square centered on the reported

cluster location, and then average image features across the whole area. We cannot extract features

without satellite imagery, so we restrict the clusters to those where at least 10% of the surrounding area

has available Google Static Maps imagery (i.e., at least 10 images are available from within the 10 km

by 10 km square centered on the cluster location). Our final LSMS dataset consists of 487 clusters in

Nigeria, 405 clusters in Tanzania, 315 clusters in Uganda, and 204 clusters in Malawi, for a total of 1411

clusters across the four countries.

Our second measure of economic well-being is a household asset score taken from the Demographic

and Health Surveys (DHS). For most developing countries in the world, DHS surveys collect nationally

representative data on fertility, maternal and child health, HIV/AIDS, malaria, and nutrition. Many of

these surveys also report a “wealth index”, which is computed as the first principal component of survey

responses for a set of questions about common asset ownership (e.g., bicycles, televisions, materials used

for housing construction). These indices are normalized within each country, and we do no further

normalization. The DHS has a similar 2-stage sampling design to the LSMS, and again we restrict

clusters to those with multiple households and su�cient satellite imagery coverage. As in the LSMS,

cluster locations in DHS are reported as the average latitude and longitude of cluster households, plus

added noise to preserve the anonymity of survey respondents. As with consumption, we average the

wealth index across households within each cluster.

We use data from the most recent DHS survey in five countries: Nigeria 2013, Tanzania 2010, Uganda

2011, Malawi 2010, and Rwanda 2010. Four out of five of these countries match those where LSMS data

were available; we add the fifth (Rwanda) so that we can directly compare our results to those from

a recent e↵ort to estimate assets using cell phone records (11). Our final DHS dataset consists of 867

clusters in Nigeria, 455 clusters in Tanzania, 393 clusters in Uganda, 827 clusters in Malawi, and 492

clusters in Rwanda, for a total of 3034 clusters across the five countries. Each cluster in our sample

contains between 11 and 45 households with a mean of 30.4 and a median of 27.

1.5 Nightlights data

Since the 1970s, the United States Air Force Defense Meteorological Satellite Program (DMSP) has

deployed satellites equipped with Operational Linescan System sensors. Originally intended to monitor

the global distribution of clouds and cloud-top temperatures, the nighttime satellite coverage has enabled

the National Oceanic and Atmospheric Administration’s National Geophysical Data Center (NOAA-

NGDC) to isolate global human-generated lighting at some point between 8:30 and 10:00 pm local time

every day.

The DMSP data processing entails removing observations distorted by cloud obstruction, moonlight,

seasonally late sunsets, and auroral events. For every 30 arc-second cell, all remaining observations over

the year are averaged and then converted to an integer “digital value” between 0 (no lighting) and 63

(representing top-coded luminosity) to produce a gridded satellite-year dataset. As of this writing, the

DMSP public archive spans the years 1992 to 2013, with some years having two overlapping satellite
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datasets (20). The accessibility, frequency, and unprecedented granularity of this data has sparked a

recent literature using these “nightlights” as a proxy for economic activity and growth.

Beginning in 2014, the NOAA-NGDC has provided a separate nighttime lights dataset collected

from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB). The VIIRS data

is produced in a 15 arc-second geographic grid, twice the resolution of the existing DMSP product.

However, these data have not yet been aggregated annually or been filtered to screen out temporal lights

from aurora, fires, boats, and other transient sources, making it noisier and potentially biased. More

importantly, VIIRS data do not exist for the survey years currently in our dataset. We decided not to use

the higher-resolution VIIRS data for these reasons, but future processed versions of this dataset could be

smoothly integrated into our model.

In our analysis, we use cluster-level coordinates provided by LSMS and DHS surveys to compare

consumption and wealth predictions generated by our transfer learning approach to those derived from

nightlights. To produce a nightlights estimate for a given location, we use the dataset corresponding to

the year the survey was conducted, extract all digital values for cells within the 10 km by 10 km square

centered on the provided coordinates, and assign the cluster the mean value.

1.6 Estimating consumption and assets

We evaluate ridge regression models in either 5- or 10-fold cross-validation for each country (as reported

in the main text), for both consumption and for assets. Ridge regression is a linear regression model

that enforces squared penalties on the size of the linear coe�cients. In our case, since the dimension of

our image features is large (d=4096), regularization helps to prevent overfitting to the relatively small

training sets. The choice of regularization parameter for each fold was made in an inner cross-validation

loop to preserve the integrity of the hold-out test data. The model r2 reported is the average test r2

across the cross-validation folds.

1.7 Randomization test

To confirm that the performance achieved by our model was not by chance, we conducted a “random-

ization inference” test in which we randomly shu✏ed the training labels so that each training example

consisted of a randomly paired image feature vector and wealth label. Each trial evaluated a ridge

regression model in 3-fold cross-validation, again choosing the regularization parameters in a nested

cross-validation fashion, and after having reduced the dimensionality of the image features to 100 using

PCA. For each country, we ran 1000 trials of this experiment and then plotted the resulting r2 distri-

bution and compared it to the predictive power of the corresponding true model trained on unshu✏ed

data. All true models (i.e., models with correct cluster training labels) achieve statistically significant

performance over randomized models at the 0.01 significance level.

1.8 Image features versus nightlights

We compared the performance of ridge regression models trained on image features extracted by the CNN

against models trained only on nightlight values. While our primary goal is to compare the performance

of our daytime image features against the standard use of nightlights is used in the literature—which is to
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take an average or a sum of nightlight values over an area of interest, and to use that average as a proxy

for or to predict some other economic outcome (7,10)—we also evaluate models that make additional use

of information in nightlights beyond area mean luminosity. See SM 2.2 for more details.

As before, model hyperparameters are chosen in a nested cross-validation fashion. Using 100-dimensional

image features extracted by the trained CNN and reduced through PCA, we ran 100 trials of 10-fold

cross-validation, using the same training and test sets to evaluate the image feature-based model and

the nightlights model. We evaluate model performance using several metrics (r2, root-mean-square error

(RMSE)), and then compute the fraction of times where the image features outperform the nightlight

features, the average margin of improvement, and the percent improvement.

We are often most interested in estimating well-being for the portion of the population that lives at

very low levels of income. In many countries, the poorest are dispersed in rural areas where nightlights

show little variation and thus have low predictive power (recall Fig. 1). To test whether the learned image

features can provide us with information where the nightlights cannot, the feature comparison experiment

was run on various subsets of the total available clusters in each country. For the LSMS countries, we first

ran the experiment on clusters that had average consumption values below 2x the global poverty line,

then repeated the experiment with thresholds of 3x, 4x, and 5x the poverty line, and then on all clusters.

For the DHS countries, we also ran the experiment five times, on clusters below the 20th, 40th, 60th, and

80th percentiles, and finally on all clusters. For the pooled model, we ran comparisons restricting the

sample to clusters below a given percentile in the consumption or asset distribution, starting with the

5th percentile and going up to the 100th percentile (full sample) in 5 percentile increments (Fig. 4a-b).

1.9 Out-of-country model generalization

Evaluating the out-of-country generalization of our models is important for understanding whether we can

expect to make accurate predictions in countries where no survey training data is available. The distri-

bution of landscape features could potentially be very di↵erent from country to country—this experiment

gives us an idea of how robust our learned image features are to such variation.

We ran 10 trials of 10-fold cross-validation for each country, in which we trained the model using data

from the base country, then evaluated the model on each of the other countries. The r2 values reported

are the average across the 100 total test folds. For the case when the pooled data was used for the base

model, we ensured that the test data for each country was not included in the training data for the pooled

model.

2 Additional results

2.1 Understanding performance di↵erences for consumption versus assets

Our approach appears to more capably predict variation in assets than variation in consumption ex-

penditures (Figs. 3, S3, S4). There are multiple potential explanations for this performance di↵erence:

(a) di↵erences in the survey design, sample size, or survey quality between DHS (assets) and LSMS

(consumption), (b) lower noise in the measured asset estimates compared to the measured consumption

estimates, as the former is generated largely from survey responses that an enumerator can visually verify,
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while the latter is generated from unverifiable responses to questions subject to substantial recall bias,

and/or (c) the possibility that our image feature approach directly measures important assets used in

construction of the asset score, such as variables related to household roofing materials.

To evaluate these possibilities, we use the available asset data in the most recent Uganda LSMS to

construct our own asset index using principal components analysis (PCA) and following the methodology

used by the DHS in the construction of their asset indices. To evaluate the possibility that image features

were directly measuring roof characteristics, we create two versions of the asset index: one which uses all

asset variables, and one which excludes any variables related to roofing materials or roof type. We then

predict these asset indices using our image features, and compare performance on this task to performance

on the consumption prediction task already reported. This experiment allows us to isolate explanations

(a) and (c) from explanation (b).

Using the “full” asset index (i.e., the one that includes roof materials), we achieve a cross-validated

r2=0.64 using our daytime image features as predictors, significantly higher than the r2=0.41 achieved

when estimating consumption using data from the same survey (Figure S5). Interestingly, predictive

performance for assets does not decline when we reconstruct the asset index after excluding variables

pertaining to roofing materials (r2=0.65 on this task).

These experiments suggest that the di↵erence in predictive performance between consumption and

assets likely has more to do with lower noise in the survey-based asset measure compared to the survey-

based consumption measure, and less to do with either underlying di↵erences between DHS and LSMS

surveys or an ability of the daytime imagery to directly measure important components of the asset index.

As further evidence refuting explanation (c) above, we use data released by DHS that describe results

of the principal component analyses used by DHS to create their asset indices in each survey. Table S1

shows, for each of the five DHS surveys we use, the 10 variables in each survey that influence the asset

score the most, ranked by the (absolute value) of each variable’s component score in the PCA. Variables

pertaining to roofing materials only rank in the top 5 variables in one out of five countries, and in the

top 10 in 3 out of 5.

2.2 Additional nightlights results

While our primary goal is to compare the performance of our daytime image features against the standard

way in which nightlights are used in the literature—which is to take an average of nighlight values over

an area of interest and to use that average as a proxy for or to predict some other economic outcome—we

also evaluate models that make additional use of information in nightlights. In particular, we evaluate

models that used as additional regressors the median luminosity in the 10 km by 10 km region, as well

as counts of pixels at di↵erent luminosity levels within the same region.

We find that using additional information beyond mean nightlights does indeed improve cross-validated

performance of the nightlights models (Fig. S7, compare to Fig. 4a-b), although—as before—our transfer

learning model still modestly outperforms nightlights for consumption throughout most of the consump-

tion distribution, and substantially outperforms nightlights in predicting assets in the poorer part of the

distribution.

While this experiment does not exhaustively explore the set of all possible ways in which nightlights

could be used, it provides additional evidence that our image features contain information beyond what
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Table S1: Ranked importance of di↵erent assets in the DHS-constructed asset in-
dex in each country. Data are derived from country files available on the DHS website
(http://www.dhsprogram.com/topics/wealth-index/Index.cfm).

Uganda Tanzania Malawi
Rank variable score variable score variable score

1 Floor: dirt -0.088 Floor: dirt -0.087 Electricity 0.091

2 Electricity 0.082 Electricity 0.086 Roof: grass/thatch/mud -0.090

3 Floor: cement 0.082 Electric lighting 0.086 Sofa set 0.090

4 Television 0.078 Television 0.081 Bed/mattress 0.089

5 Wall: cement 0.077 Floor: cement 0.081 Floor: dirt -0.089

6 Wood for cooking -0.076 Wood for cooking -0.077 Television 0.089

7 Sofa set 0.071 Refrigerator 0.067 Roof: metal 0.088

8 Charcoal for cooking 0.067 Wall: cement 0.067 Bank account 0.082

9 Roof: grass/thatch/mud -0.067 Roof: grass/thatch/mud -0.066 Refrigerator 0.079

10 Cupboard 0.061 Charcoal for cooking 0.066 Mobile phone 0.073

Nigeria Rwanda
Rank variable score variable score

1 Fan 0.085 Electricity 0.114

2 Television 0.081 Television 0.108

3 Flat iron 0.081 Floor: dirt -0.107

4 Electricity 0.074 Charcoal for cooking 0.106

5 Bank account 0.073 Floor: cement 0.102

6 Floor: dirt -0.071 Water piping into yard 0.091

7 Refrigerator 0.069 Domestic servant 0.083

8 Wall: cane, palm, trunks, dirt -0.069 Computer 0.082

9 Wood for cooking -0.067 Refrigerator 0.082

10 Kerosene for cooking 0.061 Mobile phone 0.070

nightlights provides.

2.3 Comparison to simpler methods of feature extraction from daytime imagery

Convolutional neural networks are now the de facto standard in the computer vision community to achieve

state-of-the-art performance on many vision tasks. However, there also exist many other general methods

for extracting features from images. One of the simplest methods for extracting image information is to

take the average pixel value across each color channel. For the daytime satellite images that we worked

with, this is simply the average RGB pixel value. Another method that makes use of color information

summarizes the distribution of pixels in the image as a color histogram (i.e., by binning pixels into discrete

bins based on their RGB values).

Yet another method takes the image as input and computes a histogram of oriented gradients (HOG).

This HOG feature vector computes the gradients within the image by comparing the values of neighboring

pixels, and then counts the occurrences of gradients of di↵erent orientations in localized areas of the

image. The general idea is that image features of interest can be captured in the distribution of intensity

gradients or edge directions. Finally, we also try directly reducing the dimensionality of the input satellite

images through principal component analysis (PCA). PCA works by finding n orthogonal directions of

maximum variation in the training data, and then representing all future data examples in the reduced

n-dimensional space.
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In Figure S8, we compare the performance of our transfer learning approach with these other ap-

proaches to extracting features from imagery. Due to the enormous complexity and variety of daytime

satellite images, we find that the CNN model far outperforms all of the simpler approaches described

above.

2.4 Comparison to approach using only survey data

We also study how our daytime image features perform against simpler ways that a policymaker might

use available data to predict the current spatial distribution of some economic variable of interest. In

particular, we study how our image features perform against an approach that uses available past surveys

to predict current outcomes. This approach would only be feasible in the subset of countries with at least

one survey (recall Figure 1), and can only be evaluated in the smaller subset of these countries with at

least two surveys and with location coordinates available for both surveys.

Each of our five DHS countries had conducted at least one DHS survey prior to the survey used in

our main analysis. Our survey-based approach takes each of the earlier surveys, creates a surface of asset

scores for the country by spatially interpolating the cluster-level asset scores in that earlier survey (using

inverse-distance weighting), and then uses this surface to predict the cluster-level asset scores observed

in the most recent survey.

As seen in Table S2, interpolated data on cluster-level asset scores from past surveys are generally

reasonably predictive of future asset scores, with predictive performance declining as the time between

surveys increases. Nevertheless, our daytime image features perform roughly as well as data from the

most recent prior survey (Uganda, Nigeria) or substantially better (Tanzania, Rwanda, Malawi). Given

that our approach is substantially cheaper than undertaking an additional survey (ref (5) suggests that

each DHS survey round costs roughly 1 million USD), and is applicable in any country, not just those

who have undertaken a survey in the past, this experiment provides additional evidence that our transfer

learning approach can provide useful additional information to policymakers.

Table S2: Comparison of our model performance with predictive performance of interpolated
earlier DHS surveys. Second and third columns give the survey year and model performance of our
image features. Last column gives the performance of the interpolated predictions based on earlier DHS
surveys in the same country, with years of those surveys in parentheses.

Country Survey year CNN r2 Interpolated earlier survey r2

Uganda 2011 0.69 0.58 (2001), 0.70 (2006)
Tanzania 2010 0.57 0.40 (1999)
Nigeria 2013 0.68 0.43 (1990), 0.50 (2003), 0.70 (2008)
Rwanda 2010 0.75 0.72 (2005)
Malawi 2010 0.55 0.41 (2000), 0.45 (2004)
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Figure S1: Relationship between asset-based wealth index (from DHS) and nightlight in-
tensity at the cluster level for five African countries. Distribution of nationally-representative
household-level wealth index scores shown beneath each panel in grey. Black lines are LOESS fits to the
data with corresponding 95% confidence intervals in light blue.
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Figure S2: Correlates of both poverty and nightlights that show variation around the poverty
line and can potentially be remotely sensed. a. Cluster-level relationship between consumption
and either nightlights (blue line, as in Fig 1c-f) or distance from nearest population center with at least
100,000 people (green; reverse scale on right y-axis). The figure contains many urban clusters that have
a ”distance from nearest population center” equal to zero. Consumption data are from the 2011-12
Uganda LSMS survey and distance data is derived from the Global Rural-Urban Mapping Project (27).
b. The same consumption and nightlights data, but with proportion of metal roofs derived from the
LSMS survey (yellow). c. Nationally representative distribution of household-level consumption derived
from the LSMS survey. Red vertical line in each panel denotes the international poverty line of $1.90
person�1 day�1.

0

10

20

30

0

100

200

300

0

10

20

30

0.00

0.25

0.50

0.75

1.00

5 10 15 20 25
Daily Consumption (2011 USD)

D
istance from

 population center (km
)

Proportion of roofs m
etallic

N
ig

ht
lig

ht
 in

te
ns

ity
N

ig
ht

lig
ht

 in
te

ns
ity

Nightlight intensity
Proportion of roofs metallic

Nightlight intensity
Distance from population center

a

b

c

high sensitivity 
below poverty line

low sensitivity

population
distribution

1.90

24



Figure S3: Predicted cluster-level asset index from transfer learning approach (y-axis) com-
pared to DHS-measured asset index (x-axis) for 5 countries. Predictions and reported r2 values
in each panel are from 5-fold cross validation. Both axes shown in log-scale. Black line is the best fit line.
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Figure S4: Relationship between estimated and observed consumption (a) and assets (b),
from a pooled model using data from all four LSMS countries (as in Figure 3) or all five DHS countries
(as in Figure S4). Vertical red line in the left panel is the international poverty line ($1.90 person�1

day�1). Both axes shown in log-scale for consumption.
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Figure S5: Relationship between estimated and observed asset scores, Uganda LSMS. Left
panel uses an asset index that includes variables pertaining to roofing material, right panel omits these
variables from asset index. Cross-validated r2 are reported at top of each panel.
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Figure S6: Country-level performance of our model relative to nightlights. For a given measure
of model performance, each panel shows the percent of times our model outperformed nightlights across
100 trials of 10-fold cross-validation (x-axis), versus the average di↵erence in the performance metric
between our model and nightlights (y-axis). Trials were run independently for clusters falling below
various multiples of the poverty line (for consumption) and various quintiles in the asset distribution.
Rows show average r2 improvement, percent r2 improvement, average root mean squared error (RMSE)
improvement, and percent RMSE improvement. Left column is consumption, right column is assets.
Marker colors indicate countries, and size of marker indicates sample on which trial was run. Green
shaded areas indicate models that outperform nightlights, while red shaded areas indicate models that
underperform.
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Figure S7: Evaluation of model performance against nightlights, using additional information in
nightlights beyond mean luminosity (as in Fig 4a-b). See SM 2.1 for details. a. Performance of transfer
learning model relative to nightlights for estimating consumption, using pooled observations across the 4
LSMS countries. Trials were run separately for increasing percentages of the available clusters (e.g., x-
axis value of 40 indicates that all clusters below 40th percentile in consumption were included). Vertical
red lines indicate various multiples of the international poverty line. Image features reduced to 100
dimensions using PCA. b. Same, but for assets.
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Figure S8: Comparison of CNN and alternative feature extraction methods. Bar heights
represent cross-validated r2 achieved using five di↵erent approaches to feature extraction from daytime
satellite imagery. See SM 2.3 for details.
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